70	1 2 4 8 16 3 2 6 4 128 256 512 1024
. T	CS 61C Number Representation
80 m	Fall 2018 Discussion 1: August 27, 2018
	1 Unsigned Integers 1.028 = $1.10^3 + 0.10^2 + 2.10^4 + 8.10^9$ If we have an adjoint unsigned numeral decide in radio (or been) at them.
1.1	If we have an n -digit unsigned numeral $d_{n-1}d_{n-2}\dots d_0$ in $radix$ (or $base$) r , then the value of that numeral is $\sum_{i=0}^{n-1} r^i d_i$, which is just fancy notation to say that instead of a 10's or 100's place we have an r 's or r^2 's place. For the three radices, binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.
	We don't have calculators during exams, so let's try this by hand. Recall that our preferred tool for writing large numbers is the IEC prefixing system:
	· Ki (Kibi) = 2^{10} · Gi (Gibi) = 2^{30} · Pi (Pebi) = 2^{50} · Zi (Zebi) = 2^{70} · Mi (Mebi) = 2^{20} · Ti (Tebi) = 2^{40} · Ei (Exbi) = 2^{60} · Yi (Yobi) = 2^{80}
	(a) Convert the following numbers from their initial radix into the other two common radices: (a) Convert the following numbers from their initial radix into the other two common radices: (b) 0b10010011 = 147 = 0x93
thouse the	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Do 1,2,6,16	4. $0 = 0b0 = 0x0$ $32+16=48$; $52+8$ 40 ; $32+4-36$ $5. 39 = 0b0010 0111 = 0x27$ $36+2=38$ $38+1-39$ 20 20 20 20 20 20 20 20
f.M.Sh.	7. $0x0123 = 0b0000 0001 0010 0011 = 291$ $2^{9} + 2^{5} + 2^{5} = 1 + 2 + 3 = 2 + 256 = 291$
* % -	(b) Convert the following numbers from hex to binary: (1) $0xD3AD = 0b1101\ 0011\ 1010\ 1101 = 54189$ $2^{9} + 2^{2} + 2^{3} + 2^{5} + 2^{7} + 2^{9} + 2^{12} + 2^{14} + 2^{15}$
	2. $0xB33F = 0b1011 0011 0011 1111 = 45887 7 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$
00	3. $0x7EC4 = 0b0111 1110 1100 0100 = 32452 2^{2} + 2^{6} + 2^{7} + 2^{17} $
letten Lorest	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ē.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

LSB Use floor spirision & get remuser. Read from This is general idea from yorky from higher radix to loner radix. Hex > Bhory: group into + convert dreetly. Bray to Legi 8+0=10 = A

512 - 437= 75 1001011 100000000

Digned Integers

- Unsigned binary numbers work for natural numbers, but many calculations use 2.1 negative numbers as well. To deal with this, a number of different schemes have been used to represent signed numbers, but we will focus on two's complement, as it is the standard solution for representing signed integers.
 - Most significant bit has a negative value, all others are positive. So the value of an *n*-digit two's complement number can be written as $\sum_{i=0}^{n-2} 2^i d_i - 2^{n-1} d_n$
 - Otherwise exactly the same as unsigned integers.
 - A neat trick for flipping the sign of a two's complement number: flip all the bits and add 1.
 - Addition is exactly the same as with an unsigned number.
 - Only one 0. and it's located at 0b0.

For questions (a) through (c), assume an 8-bit integer and answer each one for the case of an unsigned number, biased number with a bias of -127, and two's complement number. Indicate if it cannot be answered with a specific representation.

(a) What is the largest integer? The largest integer's representation + 1?

1. Unsigned? 255, 0

4 orgest number + Bias= 25 15-127=128 2. Biased? 128, -127

3. Two's Complement? 127, -128 Two's complement has one positive zero, zero tables up the extra positive number.

(b) How would you represent the numbers 0, 1, and -1?

1. Unsigned? 0b0000 0000, 0b0000 0001, N/A cannot represent negative number.
2. Biased? 0b0111 1111 01100000

2. Biased? 0b0111 1111, 0b1000 0000, 0b0111 1110

3. Two's Complement? 0b0000, 0b0000, 0b0000, 0b01111 1111

(c) How would you represent 17 and -17?

(c) How would you represent 17 and -17?

(d) Firehas of all trad 12 1. Unsigned? 0b0001 0001, N/A 17=16+1=2 12+

2. Biased? 0b1001 0000, 0b0110 1110 17+(12) = 144 1-17+

that only uses 8 bits?

15=11101110+1 12=/110/11/

There is no such integer. For example, an arbitrary 8-bit mapping could choose to represent the numbers from 1 to 256 instead of 0 to 255.

(e) Prove that the two's complement inversion trick is valid (i.e. that x and $\overline{x} + 1$ sum to 0).

Note that for any x we have $x + \overline{x} = 0b1...1$. A straightforward hand calculation shows that 0b1...1 + 0b1 = 0.

X+ bills=n sb X= N-bias

(f) Explain where each of the three radices shines and why it is preferred over other bases in a given context.

Decimal is the preferred radix for human hand calculations, likely related to the fact that humans have 10 fingers.

Binary numerals are particularly useful for computers. Binary signals are less likely to be garbled than higher radix signals, as there is more distance (voltage or current) between valid signals. Additionally, binary signals are quite convenient to design circuits with, as well see later in the course.

Hexadecimal numbers are a convenient shorthand for displaying binary numbers, owing to the fact that one hex digit corresponds exactly to four binary digits.

3 Counting

min + 2 min 2min

- Bitstrings can be used to represent more than just numbers. In fact, we use bitstrings to represent everything inside a computer. And, because we don't want to be wasteful with bits it is important that to remember that n bits can be used to represent 2^n distinct things. For each of the following questions, answer with the minimum number of bits possible.
 - (a) How many bits do we need to represent a variable that can only take on the 1 bit = 2 ob tons values 0, π or e? 26its = Kophons 2
 - (b) If we need to address 3 TiB of memory and we want to address every byte of memory, how long does an address need to be?

forepresent he spagle value