
CS 61C RISC-V Control Flow
Fall 2018 Discussion 4: September 17, 2018

1 RISC-V with Arrays and Lists
Comment each snippet with what the snippet does. Assume that there is an array,

int arr[6] = {3, 1, 4, 1, 5, 9}, which is starts at memory address 0xBFFFFF00,

and a linked list struct (as defined below), struct ll* lst;, whose first element

is located at address 0xABCD0000. s0 then contains arr’s address, 0xBFFFFF00, and

s1 contains lst’s address, 0xABCD0000. You may assume integers and pointers are

4 bytes and that structs are tightly packed.

struct ll {

int val;

struct ll* next;

}

1.1 lw t0, 0(s0)

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

Sets arr[1] to arr[0] + arr[2]

1.2 loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

Increments all values in the linked list by 1.

1.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:



2 RISC-V Control Flow

Negates all elements in arr

2 RISC-V Calling Conventions
2.1 How do we pass arguments into functions?

Use the 8 arguments registers a0 - a7

2.2 How are values returned by functions?

Use a0 and a1 as the return value registers as well

2.3 What is sp and how should it be used in the context of RISC-V functions?

sp stands for stack pointer. We subtract from sp to create more space and add to

free space. The stack is mainly used to save (and later restore) the value of registers

that may be overwritten.

2.4 Which values need to saved by the caller, before jumping to a function using jal?

Registers a0 - a7, t0 - t6, and ra

2.5 Which values need to be restored by the callee, before using jalr to return from a

function?

Registers sp, gp (global pointer), tp (thread pointer), and s0 - s11. Important to

note that we don’t really touch gp and tp

3 Writing RISC-V Functions
3.1 Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2 + (n− 1)2 + (n− 2)2 + . . . + 12

For this problem, you are given a RISC-V function called square that takes in an

integer and returns its square. Implement sumSquare using square as a subroutine.

sumSquare: addi sp, sp -12 # Make space for 3 words on the stack

sw ra, 0(sp) # Store the return address

sw s0, 4(sp) # Store register s0

sw s1, 8(sp) # Store register s1

add s0, a0, x0 # Set s0 equal to the parameter n

add s1, x0, x0 # Set s1 (accumulator) equal to 0

loop: bge x0, s0, end # Branch if s0 is not positive

add a0, s0, x0 # Set a0 to the value in s0, setting up

# args for call to function square

jal ra, square # Call the function square

add s1, s1, a0 # Add the returned value into s1

addi s0, s0, -1 # Decrement s0 by 1



RISC-V Control Flow 3

jal x0, loop # Jump back to the loop label

end: add a0, s1, x0 # Set a0 to s1, which is the desired return value

lw ra, 0(sp) # Restore ra

lw s0, 4(sp) # Restore s0

lw s1, 8(sp) # Restore s1

addi sp, sp, 12 # Free space on the stack for the 3 words

jr ra # Return to the caller

4 More Translating between C and RISC-V
4.1 Translate between the C and RISC-V code. You may want to use the RISC-V Green

Card as a reference. We show you how the different variables map to registers –

you don’t have to worry about the stack or any memory-related issues.

C RISC-V

// Nth_Fibonacci(n):

// s0 -> n, s1 -> fib

// t0 -> i, t1 -> j

// Assume fib, i, j init'd to:

int fib = 1, i = 1, j = 1;

if (n==0)

return 0;

else if (n==1)

return 1;

n -= 2;

while (n != 0) {

fib = i + j;

j = i;

i = fib;

n--;

}

return fib;

...

beq s0, x0, Ret0

addi t2, x0, 1

beq s0, t2, Ret1

addi s0, s0, -2

Loop: beq s0, x0, RetF

add s1, t0, t1

addi t1, t0, 0

addi t0, s1, 0

addi s0, s0, -1

jal x0, Loop

Ret0: addi a0, x0, 0

jal x0, Done

Ret1: addi a0, x0, 1

jal x0, Done

RetF: add a0, x0, s1

Done: ...


	RISC-V with Arrays and Lists
	RISC-V Calling Conventions
	Writing RISC-V Functions
	More Translating between C and RISC-V

