
CS 61C RISC-V Addressing and Caches
Fall 2018 Discussion 5: September 24, 2018

1 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the in-

struction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address (jr)

1.1 What is range of 32-bit instructions that can be reached from the current PC using

a branch instruction?

1.2 What is the range of 32-bit instructions that can be reached from the current PC

using a jump instruction?

1.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra=___________________

2 RISC-V Addressing and Caches

2 Understanding T/I/O
When working with caches, we have to be able to break down the memory addresses

we work with to understand where they fit into our caches. There are three fields:

Tag - Used to distinguish different blocks that use the same index - Number of

bits: leftovers

Index - The set that this piece of memory will be placed in - Number of bits: log2(#

of indices)

Offset - The location of the byte in the block - Number of bits: log2(size of block)

2.1 Assume we have a direct-mapped byte-addressed cache with capacity 32B and block

size of 8B. Of the 32 bits in each address, which bits do we use to find the index of

the cache to use?

2.2 Which bits are our tag bits? What about our offset?

2.3 Classify each of the following byte memory accesses as a cache hit (H), cache miss

(M), or cache miss with replacement(R). It is probably best to try drawing out

the cache before going through so that you can have an easier time seeing the

replacements in the cache. The following white space is to do this:

Address T/I/O Hit, Miss, Replace

0x00000004

0x00000005

0x00000068

0x000000C8

0x00000068

0x000000DD

0x00000045

0x00000004

0x000000C8

RISC-V Addressing and Caches 3

3 The 3 C’s of Misses
3.1 Classify each M and R above as one of the 3 types of misses described below:

I. Compulsory: First time you ask the cache for a certain block. A miss that must

occur when you first bring in a block. Reduce compulsory misses by having

a longer cache lines (bigger blocks), which bring in the surrounding addresses

along with our requested data. Can also pre-fetch blocks beforehand using a

hardware prefetcher (a special circuit that tries to guess the next few blocks

that you will want).

II. Conflict: Occurs if you hypothetically went through the ENTIRE string of ac-

cesses with a fully associative cache and wouldn’t have missed for that specific

access. Increasing the associativity or improving the replacement policy would

remove the miss.

III. Capacity: The only way to remove the miss is to increase the cache capacity,

as even with a fully associative cache, we had to kick a block out at some

point.

Note: There are many different ways of fixing misses. The name of the miss doesn’t

necessarily tell us the best way to reduce the number of misses.

4 Extra Practise
In the following diagrams, each blank box represents 1 byte (8 bits) of data. All of

memory is byte addressed.Let’s say we have a 8192KiB cache with an 128B block

size, how many bits are in tag, index, and offset? What parts of the address of

0xFEEDF00D fit into which sections?

Tag Index Offset

Number of bits

Bits of address

4.2 Now fill in the table below. Assume that we have a write-through cache, so the

number of bits per row includes only the cache data, the tag, and the valid bit.

Address size (bits) Cache Size Block Size Tag Bits Index Bits Offset Bits Bits per row

16 4KiB 4B

32 32KiB 16B

32 16 12

64 2048KiB 14 1068

	RISC-V Addressing
	Understanding T/I/O
	The 3 C's of Misses
	Extra Practise

