
CS 61C Caches II, Floating Point
Fall 2018 Discussion 6: October 1, 2018

1 Code Analysis
Given the follow chunk of code, analyze the hit rate given that we have a byte-

addressed computer with a total memory of 1 MiB. It also features a 16 KiB

Direct-Mapped cache with 1 KiB blocks.

#define NUM_INTS 8192 // 2ˆ13

int A[NUM_INTS]; // A lives at 0x10000

int i, total = 0;

for (i = 0; i < NUM_INTS; i += 128) {

A[i] = i; // Line 1

}

for (i = 0; i < NUM_INTS; i += 128) {

total += A[i]; // Line 2

}

1.1 How many bits make up a memory address on this computer?

We take log2(1 MiB) = log2(220) = 20

1.2 What is the T:I:O breakdown?

Offset = log2(1 KiB = log2(210) = 10

Index = log2(16 KiB
1 KiB) = log2(16) = 4

Tag = 20− 4− 10 = 6

1.3 Calculate the cache hit rate for the line marked Line 1:

The integer accesses are 4∗128 = 512 bytes apart, which means there are 2 accesses

per block. The first accesses in each block is a compulsory cache miss, but the

second is a hit because A[i] and A[i+128] are in the same cache block. Resulting

in a hit rate of 50%.

1.4 Calculate the cache hit rate for the line marked Line 2:

The size of A is 8192 ∗ 4 = 215 bytes. This is exactly twice the size of our cache. At

the end of Line 1, we have the second half of A inside our cache, but Line 2 starts

with the first half of A. Thus, we cannot reuse any of the cache data brought in

from Line 1 and must start from the beginning. Thus our hit rate is the same as

Line 1 since we access memory in the same exact way as Line 1. We dont have to

consider cache hits for total, as the compiler will most likely store it in a register.

Resulting in a hit rate of 50%.

2 Caches II, Floating Point

2 AMAT
Recall that AMAT stands for Average Memory Access Time. The main formula for

it is:

AMAT = Hit Time + Miss Rate * Miss Penalty

We also have two types of miss rates, global and local. Global is calculated as:

Fraction of ALL accesses that missed at that level over all accesses total. Whereas

local is calculated: Fraction of ALL access that missed at that level over all access

to that level total.

2.1 An L2$, out of 100 total accesses to the cache system, missed 20 times. What is

the global miss rate of L2$?

20
100 = 20%

2.2 If L1$ had a miss rate of 50%, what is the local miss rate of L2$?

20
50%∗100 = 20

50 = 40%. We know that L2$ is accessed when L1$ misses, so if L1$
misses 50% of the time, that means we access L2$ 50 times.

Suppose your system consists of:

1. An L1$ that hits in 2 cycles and has a local miss rate of 20%

2. An L2$ that hits in 15 cycles and has a global miss rate of 5%

3. Main memory hits in 100 cycles

2.3 What is the local miss rate of L2$?

L2$ Local miss rate = Global Miss Rate
L1$ Miss Rate = 5%

20% = 0.25 = 25%

2.4 What is the AMAT of the system?

AMAT = 2 + 20% x 15 + 5% x 100 = 10 cycles (using global miss rates)

Alternatively, AMAT = 2 + 20% x (15 + 25% x 100) = 10 cycles

2.5 Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding

in a L3$. If the L3$ has a local miss rate of 30%, what is the largest hit time that

the L3$ can have?

Let H = hit time of the cache. Using the AMAT equation, we can write:

2 + 20% ∗ (15 + 25% ∗ (H + 30% ∗ 100)) ≤ 8

Solving for H, we find that H ≤ 30. So the largest hit time is 30 cycles.

3 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields:

• The sign determines the sign of the number (0 for positive, 1 for negative)
• The exponent is in biased notation with a bias of 127
• The significand or mantissa is akin to unsigned, but used to store a fraction

instead of an integer

Caches II, Floating Point 3

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp−Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp−Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

3.1 How many zeroes can be represented using a float?

2

3.2 What is the largest finite positive value that can be stored using a single precision

float?

0x7F7FFFFF = (2− 2−23) ∗ 2127

3.3 What is the smallest positive value that can be stored using a single precision float?

0x00000001 = 2−23 ∗ 2−126

3.4 What is the smallest positive normalized value that can be stored using a single

precision float?

0x00800000 = 2−126

3.5 Cover the following numbers from binary to decimal or from decimal to binary:

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

4 Extra Stuff on Caches!
4.1 Heres some practice involving a 2-way set associative cache. This time we have

an 8-bit address space, 8 B blocks, and a cache size of 32 B. Classify each of the

4 Caches II, Floating Point

following accesses as a cache hit (H), cache miss (M) or cache miss with replacement

(R). For any misses, list out which type of miss it is.

Address T/I/O Hit, Miss, Replace

0b0000 0100

0b0000 0101

0b0110 1000

0b1100 1000

0b0110 1000

0b1101 1101

0b0100 0101

0b0000 0100

0b1100 1000

0b0000 0100 Tag 0000, Index 0, Offset 100 - M, Compulsory

0b0000 0101 Tag 0000, Index 0, Offset 101 - H

0b0110 1000 Tag 0110, Index 1, Offset 000 - M, Compulsory

0b1100 1000 Tag 1100, Index 1, Offset 000 - M, Compulsory

0b0110 1000 Tag 0110, Index 1, Offset 000 - H

0b1101 1101 Tag 1101, Index 1, Offset 101 - R, Compulsory

0b0100 0101 Tag 0100, Index 0, Offset 101 - M, Compulsory

0b0000 0100 Tag 0000, Index 0, Offset 100 - H

0b1100 1000 Tag 1100, Index 1, Offset 000 - R, Capacity

4.2 What is the hit rate of our above accesses?

3 hits
9 accesses = 1

3 hit rate

	Code Analysis
	AMAT
	Floating Point
	Extra Stuff on Caches!

