05 61C CALL, WSC, MapReduce, Spark
Faﬂ 2018 Discussion 7: October 8, 2018

1 Compile, Assemble, Link, Load, and Gol

Assembly program: foo.s

Object Code: foo.o

What is the Stored Program concept and what does it enable us to do? 4 Iy kvt h’) nf — _DGL“,’&

It is the idea that instructions are just the same as data, and we can treat them as {) £5 & A S DA M/ﬂmﬁy’
such. This enables us to write programs that can manipulate other programs! 4 'Fi'/bf ? Ve g’yz‘,‘g

How many passes through the code does the Assembler have to make? Why?

—T'wo, one to find all the label addresses and another to convert all instructions while

resolving any forward references using the collected label addresses.

What are the different parts of the object files output by the Assembler? 6 ‘|'bh/ f"fﬂm 5

e Header: Size and position of other parts

e Text: The machine code

) Pfia: Binary representation of any data in the source file

e Relocation Table: Identifies lines of code that need to be “handled” by Linker

® §‘\;{§}1391 Tahl(z_:' List of the files labels and data that can be referenced

e Debugging Information: Additional information for debuggers

it U

Which step in CALL resolves relative addressing? Absolute addressing?

2 CALL, WSC, MapReduce, Spark

Assembler, linker

What does RISC stand for? How is this related to pseudoinstructions?

Reduced Instruction Set Computing. Minimal set of instructions leads to many

lines of code. Pseudoinstructions are more complex instructions intended to make
assembly programming easier for the coder. These are converted to TAL by the

assembler.

e The input to each MapReduce job is given by the signature of map().
e emit(key k, value v) outputs the key-value pair (k, v).

e for var in list can be used to iterate through Iterables or you can call
the hasNext() and next() functions.

e Usable data types: int, float, String. You may also use lists and custom
data types composed of the aforementioned types.

e intersection(list1l, list2) returns a list of the intersection of 1list1, list2.

Civen a set of coins and each coin’s owner, compute the number of coins of each

denomination that a person has.
Declare any custom data types here:

CoinPair:
String person

r C g Api %
String coinType \ {}@;:fsx\ - M X M ‘E"m ﬂ:/é A ik
\LLL%’ k\jf'“’ LAY W '
Co Q VI O Y o bi
map (): 1 reduce(, I
map(String person, String coinType): reduce(CoinPair key, Iterable<int> values):
key = (perso

emit(key, 1) for count in values:

coinType total = @
2)] : alss vp all

We vy ke total += count he @-\;J
it(key, H . Se
hﬂup ”’V'}Lc L f)Q’ e emit(key, total) w0 j

Numbll ok L“J(ool Y o AL Le < f" zF

spogan b

On, raﬁw")

CALL, WSC, MapReduce, Spark 3

Using the output of the first MapReduce, compute each person’s amount of money.
valueOfCoin(String coinType) returns a float corresponding to the dollar value of

the coin.
1 map(.) 1 reduce(5):
map(CoinPair key, int amount): reduce(String key, Iterable<float> values):
emit(coinPair.person, total = @ s o a ” O,{;{L&
valueOfCoin(coinPair.coinType) * amount) for amount in values: U?\/“\nﬁ"u"'g
VAL 0 Ao Fov’ total += amount ¢
i (b U 50 emit(key, total)

J Sparl(

Resilient Distributed Datasets (RDD) are the primary abstraction of a dis-

|

tributed collection of items 4& 'fLwL\ " }‘h 1; < zzf,f, . g},_f;gs_* L ngﬁ
Transforms RDD — RDD

map(f) Return a new dataset formed by calling f on each source element.

flatMap(f) Similar to map, but each input item can be mapped to 0 or more

output items (so f should return a sequence rather than a single item).

reduceRyKey(f) When called on a dataset of (K, V') pairs, returns a dataset
of (K,V) pairs where the values for each key are aggregated using the
given reduce function f, which must be of type (V,V) = V.

Actions RDD — Value

reduce(f) Aggregate the elements of the dataset regardless of keys using a
function f.

(Call sc.parallelize(data) to parallelize a Python collection, data.

Given a set of coins and each coin’s owner, compute the number of coins of each
denomination that a person has. Then, using the output of the first result, compute
each person’s amount of money. Assume valueOfCoin(coinType) is defined and
returns the dollar value of the coin.

The type of coinPairs is a list of (person, coinType) pairs.

SLH fov

, . b AT ovi ®
1 coinData = sc.parallelize(coinPairs) (Lé/ Lm/‘f Vﬁ\lh_j(

/uS

A nagreds
outl = coinData.map(lambda (k1, k2): ((k1, k2), 1)) ')‘:ﬁ‘}
.reduceByK bB@ (DF?‘&
yKey(lambda v1, v2: vl + v2x<Z gyr M

out2 = outl.map(lambda (k, v): (k[®8], v * valueOfCoin(k[11)))
.reduceByKey(lambda v1, v2: vl + v2)

4 CALL, WSC, MapReduce, Spark

4 Amdahl’s Law

In the programs we write, there are sections of code that are naturally able to be
sped up. However, there are likely sections that just can’t be optimized any further
to maintain correctness. In the end, the overall program speedup is the number

that matters, and we can determine this using Amdahl’s Law:

1

=
S+17

True Speedup =

where 5 is the Non-sped-up part and P is the speedup factor.

You write code that will search for the phrases “Hello Sean”, “Hello Jon”, “Hello
Dan”, “Hello Man”, “Bora is the Best!” in text files. With some analysis, you
determine you can speed up 40% of the execution by a factor of 2 when parallelizing
vour code. What is the true speedup?)

g {=4a%}, 0. €

Ay
1).6+%:ﬁ=u5 P2

You are going to run your project 1 feature analyzer on a set of 100,000 images
using a WSC of more than 55,000 servers. You notice that 99% of the execution of
your project code can be parallelized on these servers. What is the speedup?

1 1 P = g [aY214)

e B e 4 (UM
0.01+ & 0.01 <=0]

5 Warehouse-Scale Computing

Sources speculate Google has over 1 million servers. Assume each of the 1 million k%ﬁw ¢
servers draw an average of 200W, the PUE is 1.5, and that Google pays an average fC :
i

of 6 cents per kilowatt-hour for datacenter electricity.

v TR) = ﬂe]]/} /
5.1| Estimate Google’s annual power bill for its datacenters. i O'Q}&f vies Kw__ [4 Elo =
QY= TG ics

1.5 - 10° servers - 0.2kW /server - $0.06/kW-hr - 8760 hrs/yr ~ $157.68 M /year

Google reduced the PUE of a 50,000-machine datacenter from 1.5 to 1.25 without
decreasing the power supplied to the servers. What’s the cost savings per year?

rrn _ Total building power b 5 T i T ST e
PUE = 37 el o soas T Savings x (PUE1q—PUE;,¢,)*IT equipment power |

(1.5—1.25)-50000 servers-0.2kW /server-$0.06 /kW-hr-8760hrs/yr ~ $1.314 M/year

CALL, WSC, MapReduce, Spark 5

i} MapReclﬁce / Spark Practice: Optimize Your GPA

Given the student’s name and course taken, output their name and total GPA.

Declare any custom data types here:

CourseData:
int courselD
float studentGrade // a number from @-4

1 map(A - : J:

map(String student, CourseData value):

emit(student, value.studentGrade)

Wi int F6 emt e

g%vlw«& o+ 9 ade v ehLYy J;/wﬂj,

Solve the problem above using Spark.

The type of students is a list of (studentName, courseData) pairs.
Ly Yol K

1 studentsData = sc.parallelize(students)
2 out = studentsData.map(lambda (k, Vv):

.reduceByKey(lambda v1,
.map(lambda (k, v):

'/7
aﬁ?‘j_;{a [ﬁ.g I&"LR””V{JL‘%“

B QP\OEF%
MATTE

1

(k, (v.studentGrade,

g
,g%[@z + vzt_@_a,, (m - verip)

(k, ¢Fe] / vI1

£\l
{ 3

1 reduce("):

reduce(String key, Iterable<float> values):
totalPts = @ QP"’ = hﬂx! g G‘\}
totalClasses = @ Fafule fosss
for grade in values: W /T/ /
totalPts += grade% / S
totalClassesﬂ: <l L i

emlt(kecy, totalPts & totalClasses}

[w@h?&\ww 47
C Ry agid“?"d e ‘M

o | u”ﬂ}»}fff
iy

% e
ol ijf}"""“ ‘E"‘"’W£

6 CALL, WSC, MapReduce, Spark

i MapRecluce / Sparl(Practice: Optimize the Friend Zone

Given a person’s unique int ID and a list of the IDs of their friends, compute the
list of mutual friends between each pair of friends in a social network.

Declare any custom data types here:

FriendPair:
int friendOne

int friendTwo

map (. ¥z 1 reduce(s b
map(int personlID, list<int> friendIDs): reduce(FriendPair key,Iterable<list<int>> values):
for fID in friendIDs: mutualFriends = intersection(
if (personID < fID): values.next(), values.next()
friendPair = (personlD, fID) 3
else: emit(key, mutualFriends)

friendPair = (fID, personlD)
emit(friendPair, friendIDs)

Solve the problem above using Spark.
The type of persons is a list of (personID, list(friendID) pairs.

def genFriendPairAndValue(pID, fIDs):
return [((pID, fID), fIDs) if pID < fID else (fID, pID) for fID in fIDs]

def intersection(l1, 12):
return [x for x in b1 if x in b2]

personsData = sc.parallelize(persons)

out = personsData.flatMap(lambda (k, v): genFriendPairAndValue(k, v))
.reduceByKey(lambda v1, v2: intersection(vl, v2))

