05 61C
Fall 2019

Floating Point, RISC-V Intro
Discussion 3: September 16, 2019

| Floating Point

The TEEE 754 standard defines a binary representation for floating point values
using three fields.

e The sign determines the sign of the number (0 for positive, 1 for negative).
e The ezponent is in biased notation. For instance, the bias is 127 (2871 — 1)

for single-precision floating point numbers.
e The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.
The below table shows the bit breakdown for the single precision (32-bit) represen-
tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign | Exponent Mantissa/Significand /Fraction

For normalized floats:

Value = (—1)599" x 2Fzp—Bias 4 | gignificand,
For denormalized floats:

Value = (—1)%97 x 2Fzp—Biastl 4 (significand,

Signititend g
oif 27

(for b4 n p 't ‘0"3//%29

({rm\,\) et 4 }o//} },’l‘)

Exponent | Significand | Meaning
0 Anything Denorm
1-254 Anything Normal
255 0 Infinity
255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When
translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

How many zeroes can be represented using a float?

> +0,-0

What is the largest finite positive value that can be stored using a single precision

float? ¢y —O montissa = qll 6/ ret
= ypéqenJri?,S‘%

OXTF7FFFFF = (1 + (1 —2723)) x 2127

The mantissa for the largest value will be 23 1’s. This corresponds to a value of

Al 1 =271 4272 4. 273 =0723(222 1 921 L. 4)

Here, we apply the formula that Z;L:_Ol 28 = 2" — 1, so we have that the mantissa is

2—23(222 + 221 _|_ - + 1) — 2—23(223 _ 1) — 1 _ 2—23

Brp it >

%Q-,g&\'ﬂ

Exe?\w

2 Floating Point, RISC-V Intro

We have 1+ (1 — 2723) since we this is a normalized number and thus has a 1 to
the left of the decimal point.

What is the smallest positive value that can be stored using a single precision float?
§i q,\:, 0 Exp,nen{t,o
Maatissa LS8 set

What is the smallest positive normalized value that can be stored using a single

0x00000001 = 2723 x 2—126

precision float? $iyn >0 Exponent = |

0x00800000 = 2126 mpatisa=0

Tritd for fin f’/y maih iy
Cover the following single-precision floating point numbers from binary to decimal .
—Fp v 3 0] ! S { 2 5 .

or from decimal to binary. You may leave your answer as an expression.
’ T ’ D.uum—-g/zs
it ol . -
e 0x00000000 215 3¢ meatiisa e 395625 0 1= 100 1L Ioof 09 62 = 028
0.26x1L =05 0 100 111100 25
0.5 x2 =00) J¥sC 9 0cL5 X L@S 9
0 o xr= @ 0 0x421E4000 . Lt @ I V
i v P28+129: 32 X2 T /)
e 825% 1000.01, 0.01,2025, ¥ o 0xFFI4BEEF e 08 % @
N —
2 1. 00001 Expone,t s |1 ong o0 #2™
_ 1
0x41040000 > ¢ NaN CHPReaTi A ¢

Mmanhisa i§ nontero
e 0x00PQ0F00 .o
12 13 14 15 126 EYPO}‘“’* 74 a_“ onesd
(2722718 427 4 27 10) x 27 0xFFS00000 g nt7$S &[S Jere.
$iyn i on, so ne gative

2 More Floating Point Representation

Not every number can be represented perfectly using floating point. For example, %
can only be approximated and thus must be rounded in any attempt to represent it.
For this question, we will only look at positive numbers.

What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This
is the same as incrementing the significand by 1 at the rightmost location.
(1+272)x2=2+42"22

What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This
is the same as incrementing the significand by 1 at the rightmost location.
(1+2723)x4=4+2"2

Define stepsize to be the distance between some value x and the smallest value larger
than x that can be completely represented. What is the step size for 27 47

Floating Point, RISC-V Intro 3

This would be the amount added in part 1. This gives 2722 and 272!,

Now let’s see if we can generalize the stepsize for normalized numbers (we can do so
for denorms as well, but we won’t in this question). If we are given a normalized
number that is not the largest representable normalized number with exponent value
x and with significand value y, what is the stepsize at that value? Hint: There are
23 significand bits.

Here we need to generalize the solution we got in 1 and 2. However, this is the same
approach just increment the signifcand by the 1.

curr_number = 227127 4 27127 4y,

next_number = 277127 4 987127 4y 4 9P—127 4 9—23

stepsize = next_number — curr_number = 27150

Now let’s apply this technique. What is the largest odd number that we can
represent? Part 4 should be very useful in finding this answer.

To find the largest odd number we can represent, we want to find when odd numbers
will stop appearing. This will be with step size of 2.

As a result, plugging into Part 4: 2 = 227190 — 5 = 151

This means the number before 2151127

was a distance of 1 (it is the first value
whose stepsize is 2) and no number after will be odd. Thus, the odd number is
simply subtracting the previous step size of 1.This gives,

224 1

3 RISC-V: A Rundown

RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

/] x => s0, & -> s (O :X0+S

int x = 5, y[2]; addi s@, x0, 5 - 0
y[@] = x; sw s0@, 0(s1) 5{ C OJV s
y[1] = x * x; mul t@, s@, s0 -tO'.: 50';0

sw t@, 4(s1) 5, LIJ: _eo

Can you figure out what each line in the RISC-V code is doing?

4 Floating Point, RISC-V Intro

addi s@, x@, 5 evaluates to x = 5. sw s@, 0(s1) evaluates to y[0] = x. mul to,

s@, s0 calculates x * x. sw t@, 4(s1) evaluates to y[1] = x * x.

4 Registers

In RISC-V, we have two methods of storing data: main memory and registers.
Registers are much faster than using main memory, but are very limited in space (32
bits each). Note that you should ALWAYS use the named registers (e.g. s@ rather

than x8).
H Register(s) ‘ Alt. ‘ Description H
x0 Z€ero The zero register, always zero
x1 ra The return address register, stores where functions should return
x2 sp The stack pointer, where the stack ends
x5-x7, x28-x31 | t0-t6 The temporary registers
x8-x9, x18-x27 | s0-s11 The saved registers
x10-x17 a0-a7 The argument registers, a0-al are also return value
. — . a -
Can you convert each instruction’s registers to the other form? l/O R k UP (N 7/ [% 714 A)6
add s0, zero, al -=> add x8, x0, x11 -
’) ’ ’ rLb 3
or x18, x1, x30 --> or s2, ra, t5 EY+/“P@¢f7

1V <p, 0(40)=> 1 x2,061)

Note that you should ALWAYS use the named registers (e.g. s@ rather than x8).

) Basic Instructions

For your reference, here are some of the basic instructions for arithmetic operations
and dealing with memory (Note: ARG1 is argument register 1, ARG2 is argument

register 2, and DR is destination register):

[inst] [destination register| [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

Xor Exclusive or’s the two argument registers and stores in destination register
mul Multiplies the two argument registers and stores in destination register
sl Logical left shifts ARG1 by ARG2 and stores in DR

srl Logical right shifts ARG1 by ARG2 and stores in DR

sra Arithmetic right shifts ARG1 by ARG2 and stores in DR
slt/u | If ARG1 < ARG2, stores 1 in DR, otherwise stores 0, u does unsigned comparison
[inst] [register]| [offset]([register containing base address])

SW Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register
[inst] [argument register 1] [argument register 2] [label]

beq If ARG1 == ARG2, moves to label

bne If ARG1 != ARG2, moves to label

Floating Point, RISC-V Intro 5

[inst] [destination register] [label]

jal Stores the next instruction’s address into DR and moves to label

“ ”

You may also see that there is an at the end of certain instructions, such as addi,
slli, etc. This means that ARG2 becomes an “immediate” or an integer instead of
using a register. There are also immediates in some other instructions such as sw
and lw. NOTE: The size of an immediate in any given instruction depends on what

type of instruction it is (more on this soon!).

Assume we have an array in memory that contains int* arr = {1,2,3,4,5,6,0}.
Let register s@ hold the address of the zeroth element in arr. You may assume
integers are four-bytes and our values are word-aligned. What do the snippets of
RISC-V code do? Assume that all the instructions are run one after the other in
the same context.

a) lw to, 12(s0) -—> Sets t@ equal to arr[3]

b) s1li t1, to, 2&— 1= 0L 2= to 4
add t2, so, t1 < £1L- =450 + &)
lw 3, @(tz)ek3°52r@“> Increments arr[t@] by 1
addi t3, t3, 1 {3 +T |

M0 k=43 oy, onFH'FJTFF J(&”/f’ M(I?IMW{C/
s l¢go alldhes

o) lw to, 0(s0) tokou)]/
xori t@, t@, OxFFF - Sets t0 to -1 * arr[0] ‘k)'\\/g ¥y l-{fea/l/

addi to, to, 1 £0 4= | with 0, FEFFFFFF

6 Floating Point, RISC-V Intro

6 C to RISC-V

Translate between the C and RISC-V verbatim

C RISC-V
/] s@ ->a, sl —>b addi so, xo, 4 a= V¥
// s2 ->c, s3 -> z addi s1, x0, 5 bzg
inta=4,b=5,c=6, z; addi s2, x0, 6 L’/é
z=a+b+c+ 10; add s3, s0, s1 x=ath
add s3, s3, s2 %_—/_14'(,
addi s3, s3, 10 2=2+[9
// s@ —> int * p = intArr; | sw x0, 0(s0) Equiv of helau q‘(P'f“)
uv o
/7 s L Pk pdsaddr @ p — 0 i 51, w0, 2 ¥
*p = 0; sw s1, 4(s0) ;/\cnmen‘fs y’Jr $o a
int a = 2; [dDE / slli to, s1, 2& Werdaddr ¢ por
p[1] = plal = a; 9 pla)on & — add t0, to, s0 &— &dds the newaddn
Sw s1,

1< npu,
byteaddy,

00 < Normul et w/moy 43dr,

// s& -> a, s1 ->b //—-—'—*addi s@, x0, 5
int a = 5, b = 10; n=6 /_—/—ﬂaddi s1, x0, 10
ifa+a==b) { b=10 L — add t0, so, so
a=0; wﬂ\f A // bne t0, s1, else €
} else { N " o oh T‘F({."::b)/ xor s0, x0, x@ gmg'fﬁ'er ethed o
b=a-1; =0 jal xe, exit {QH”‘D & eqgtoxers
} DN else:
T—— | _addi si1, so, -1
exit:
// computes s1 = 2°30 addi so, x0, 0 S0 =0
sl = 1; addi s1, x0, 1 5l:| \oags
n
For (s0=0;50<30;5++) { addi to, x, 30 €0 =30& how|meny 1f
s1 *= 2; loop: while (s0!=9) ¢
3 b:j s0, t0, exit Sl (i1t &1
a s1, s1, si
T - t+ 1 & j~¢ b
addi so, so, 1 S0 =50 t& wder
jal x@, loop 5

exit:

Sum=0
while (a59{

UM ZSym 4|
n=n-|

Floating Point, RISC-V Intro 7

// s@ ->n, s1 -> sum
// assume n > @ to start
for(int sum = @; n > 0; n--) {

sum += n;

addi
loop:
beq
add
add
jal
exit:

s1,

S0,
s1,
S0,
X0,

xo, o0 €£51=0

X0, exit while (!ﬂ!:p){

s1, s@ 512 $1+s0
s0, -1)’02{0-{-\,
loop 3

