
CS 61C Floating Point, RISC-V Intro
Fall 2019 Discussion 3: September 16, 2019

1 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is 127 (28−1 − 1)

for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp−Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp−Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

1.1 How many zeroes can be represented using a float?

2

1.2 What is the largest finite positive value that can be stored using a single precision

float?

0x7F7FFFFF = (1 + (1− 2−23)) ∗ 2127

The mantissa for the largest value will be 23 1’s. This corresponds to a value of

.11 . . . 1 = 2−1 + 2−2 + · · ·+ 2−23 = 2−23(222 + 221 + · · ·+ 1)

Here, we apply the formula that
∑n−1

i=0 2i = 2n − 1, so we have that the mantissa is

2−23(222 + 221 + · · ·+ 1) = 2−23(223 − 1) = 1− 2−23



2 Floating Point, RISC-V Intro

We have 1 + (1− 2−23) since we this is a normalized number and thus has a 1 to

the left of the decimal point.

1.3 What is the smallest positive value that can be stored using a single precision float?

0x00000001 = 2−23 ∗ 2−126

1.4 What is the smallest positive normalized value that can be stored using a single

precision float?

0x00800000 = 2−126

1.5 Cover the following single-precision floating point numbers from binary to decimal

or from decimal to binary. You may leave your answer as an expression.

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

2 More Floating Point Representation
Not every number can be represented perfectly using floating point. For example, 1

3

can only be approximated and thus must be rounded in any attempt to represent it.

For this question, we will only look at positive numbers.

2.1 What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 2 = 2 + 2−22

2.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 4 = 4 + 2−21

2.3 Define stepsize to be the distance between some value x and the smallest value larger

than x that can be completely represented. What is the step size for 2? 4?



Floating Point, RISC-V Intro 3

This would be the amount added in part 1. This gives 2−22 and 2−21.

2.4 Now let’s see if we can generalize the stepsize for normalized numbers (we can do so

for denorms as well, but we won’t in this question). If we are given a normalized

number that is not the largest representable normalized number with exponent value

x and with significand value y, what is the stepsize at that value? Hint: There are

23 significand bits.

Here we need to generalize the solution we got in 1 and 2. However, this is the same

approach just increment the signifcand by the 1.

curr number = 2x−127 + 2x−127 ∗ y
next number = 2x−127 + 2x−127 ∗ y + 2x−127 ∗ 2−23

stepsize = next number − curr number = 2x−150

2.5 Now let’s apply this technique. What is the largest odd number that we can

represent? Part 4 should be very useful in finding this answer.

To find the largest odd number we can represent, we want to find when odd numbers

will stop appearing. This will be with step size of 2.

As a result, plugging into Part 4: 2 = 2x−150 → x = 151

This means the number before 2151−127 was a distance of 1 (it is the first value

whose stepsize is 2) and no number after will be odd. Thus, the odd number is

simply subtracting the previous step size of 1.This gives,

224 − 1

3 RISC-V: A Rundown
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

int x = 5, y[2];

y[0] = x;

y[1] = x * x;

// x -> s0, &y -> s1

addi s0, x0, 5

sw s0, 0(s1)

mul t0, s0, s0

sw t0, 4(s1)

3.1 Can you figure out what each line in the RISC-V code is doing?



4 Floating Point, RISC-V Intro

addi s0, x0, 5 evaluates to x = 5. sw s0, 0(s1) evaluates to y[0] = x. mul t0,

s0, s0 calculates x * x. sw t0, 4(s1) evaluates to y[1] = x * x.

4 Registers
In RISC-V, we have two methods of storing data: main memory and registers.

Registers are much faster than using main memory, but are very limited in space (32

bits each). Note that you should ALWAYS use the named registers (e.g. s0 rather

than x8).

Register(s) Alt. Description

x0 zero The zero register, always zero

x1 ra The return address register, stores where functions should return

x2 sp The stack pointer, where the stack ends

x5-x7, x28-x31 t0-t6 The temporary registers

x8-x9, x18-x27 s0-s11 The saved registers

x10-x17 a0-a7 The argument registers, a0-a1 are also return value

4.1 Can you convert each instruction’s registers to the other form?

add s0, zero, a1 -->

or x18, x1, x30 -->

add x8, x0, x11

or s2, ra, t5

Note that you should ALWAYS use the named registers (e.g. s0 rather than x8).

5 Basic Instructions
For your reference, here are some of the basic instructions for arithmetic operations

and dealing with memory (Note: ARG1 is argument register 1, ARG2 is argument

register 2, and DR is destination register):

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register

sll Logical left shifts ARG1 by ARG2 and stores in DR

srl Logical right shifts ARG1 by ARG2 and stores in DR

sra Arithmetic right shifts ARG1 by ARG2 and stores in DR

slt/u If ARG1 < ARG2, stores 1 in DR, otherwise stores 0, u does unsigned comparison

[inst] [register] [offset]([register containing base address])

sw Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register

[inst] [argument register 1] [argument register 2] [label]

beq If ARG1 == ARG2, moves to label

bne If ARG1 != ARG2, moves to label



Floating Point, RISC-V Intro 5

[inst] [destination register] [label]

jal Stores the next instruction’s address into DR and moves to label

You may also see that there is an “i” at the end of certain instructions, such as addi,

slli, etc. This means that ARG2 becomes an “immediate” or an integer instead of

using a register. There are also immediates in some other instructions such as sw

and lw. NOTE: The size of an immediate in any given instruction depends on what

type of instruction it is (more on this soon!).

5.1 Assume we have an array in memory that contains int* arr = {1,2,3,4,5,6,0}.
Let register s0 hold the address of the zeroth element in arr. You may assume

integers are four-bytes and our values are word-aligned. What do the snippets of

RISC-V code do? Assume that all the instructions are run one after the other in

the same context.

a) lw t0, 12(s0) -->

b) slli t1, t0, 2

add t2, s0, t1

lw t3, 0(t2) -->

addi t3, t3, 1

sw t3, 0(t2)

c) lw t0, 0(s0)

xori t0, t0, 0xFFF -->

addi t0, t0, 1

Sets t0 equal to arr[3]

Increments arr[t0] by 1

Sets t0 to -1 * arr[0]



6 Floating Point, RISC-V Intro

6 C to RISC-V
6.1 Translate between the C and RISC-V verbatim

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

addi s0, x0, 4

addi s1, x0, 5

addi s2, x0, 6

add s3, s0, s1

add s3, s3, s2

addi s3, s3, 10

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

sw x0, 0(s0)

addi s1, x0, 2

sw s1, 4(s0)

slli t0, s1, 2

add t0, t0, s0

sw s1, 0(t0)

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 5

addi s1, x0, 10

add t0, s0, s0

bne t0, s1, else

xor s0, x0, x0

jal x0, exit

else:

addi s1, s0, -1

exit:

// computes s1 = 2ˆ30

s1 = 1;

for(s0=0;s0<30;s++) {

s1 *= 2;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:



Floating Point, RISC-V Intro 7

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

addi s1, x0, 0

loop:

beq s0, x0, exit

add s1, s1, s0

add s0, s0, -1

jal x0, loop

exit:


	Floating Point
	More Floating Point Representation
	RISC-V: A Rundown
	Registers
	Basic Instructions
	C to RISC-V

