CS 61C RISC-V Control Flow
Faﬂ 2019 Discussion 4: September 23, 2019

1 RISC-V with Arrays and Lists

Comment what each code block does. Each block runs in isolation. Assume that
there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory
address @xBFFFFF00, and a linked list struct (as defined below), struct 11x 1st,
whose first element is located at address @xABCD0@Q0. Let s@ contain arr’s address
OxBFFFFF@Q, and let s1 contain 1st’s address @xABCD0@0@. You may assume integers
and pointers are 4 bytes and that structs are tightly packed. Assume that 1st’s last
node’s next is a NULL pointer to memory address 0x00000000.

struct 11 {
int val;
struct 11* next;

}

w0, 0(s0) Lo =aflr (0]

lw t1, 8(s0) ¢ Zalc (1)

add t2, to, t1 (1= 0 <&] =D El=arr (9) ‘o (1)

sw t2, 4(s0) wrr(1)=t1 ichis what thig is

«

Sets arr[1] to arr[0] + arr[2])
1| (£ the pext 18 noll alca end o€ s

loop: beq s1, x0, end & Sl s nd'l | ot

w to, o(s1) & take vl (n /s'f"/

addi to, to, 1&—add 9Ne +6 1t

sw to, o(sh) & f VT the ey value hath. .

lw s1, 4(s1) & loﬂé 4 e ,\@A’ é‘k/b“"l/f/ ‘\'0 y Jéfu

jal x@, loop \{Umf hack %o lbor 4 Ao no t Stere f\CfU(n A S

end:

Increments all values in the linked list by 1.

add te, xo, xo ¥0=10 o & TLCS{,(/Le(,L £or i £
o = 6046) 0 o

loop: slti t1, to, 6 ¢l = C } /WQ/L\“ v ""91/1\/0./9[\ 6
beq t1, x0, ende £ end aoy (HTSMULL gvan of pie fiiy 1,74
slli t2, 10, 2 & §ek &3 1o mext int o laled (4
add t3, s0, t2 ¢/
I t4, o(t3) e lgod T bet ol
sub t4, x0, t4 & ne, hte ¥
W t4, 0(t3) & pU fJ(Lok
addi t0, t0, 1& [NCremtat At oV
jal xe, loop,_ 3“,\'0 loack ko (WF A/ (er(A/“’

ter

end:

2 RISC-V Control Flow

Negates all elements in arr

2 RISC-V Cauing Conventions

How do we pass arguments into functions?

Use the 8 arguments registers a0 - a7
————

How are values returned by functions?

Use a0 and a1l as the return value registers as well

e ——

What is sp and how should it be used in the context of RISC-V functions? e [kre Q’A“ L

_ a(\pb

UV =

sp stands for stack pointer. We subtract from sp to create more space and add to
free space. The stack is mainly used to save (and later restore) the value of registers

that may be overwritten.

Which values need to saved by the caller, before jumping to a function using jal?

|
\oo b at (Ofw‘ Shee
<
Registers a0 - a7, 40 - t6, and ra

Which values need to be restored by the callee, before returning from a function?

S/

Registers sp, gp (global pointer), tp (thread pointer), and s@ - s11. Important to
note that we don’t really touch gp and tp

3 More Translating between C and RISC-V

Translate between the RISC-V code to C. What is this RISC-V function computing?

Assume no stack or memory-related issues, and assume no negative inputs.

RISC-V Control Flow 3

C RISC-V

| —

/7 a@ ->x, al >y, L Func: addi to xo 1 & /ESVIT — p |
‘ —0 H>whilcfy 2o
// t@ -> result ¥Toop: beq al x@ Done Q" \'JL‘\L O \ “-/O l\))

// Function computes pow(x,y) mul t0 t0 a0 & O > D\O N (egu\/}&:
/addi al al —1<\ Al — — B \f—/— -
jal x0 Loop & =, :é . -
/Déadd a0 toxo Y Phatd £ lﬂap.
jr ra Q AU f(é;l/l'r ,\,0 V(/l/

% srefury vesul\y

R

// Direct translation:
int power(int x, int y) {
int result = 1;
while (y !'= 0) {

result *= x;

return result; &

4 Writing RISC-V Functions

Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.
4+ n—-172%+n-22%+...+12

For this problem, you are given a RISC-V function called square that takes in a

single integer and returns its square.

First, let’s implement the meat of the function: the squaring and summing. We will
be abiding by the caller/callee convention, so in what register can we expect the
parameter n? What registers should hold square’s parameter and return value? In

what register should we place the return value of sumSquare?

add s@, a0, x0
g‘g: /| add s1, x0, x0

§(T/§O b&‘ loop: bge x@, s0, end
add a0, s0, x0

Set s0@ equal to the parameter n

Set s1 (accumulator) equal to 0

Branch if s@ is not positive

Set a@ to the value in s@, setting up

args for call to function square

jal ra, square Call the function square
add s1, s1, a0
addi s0, so, -1
jal x@, loop

end: add a0, sl1, x0

Add the returned value into si
Decrement s@ by 1

Jump back to the loop label

Set a0 to s1 (desired return value)

HOHF OHF OH OH OF O OH OH OH

Since sumSquare is the callee, we need to ensure that it is not overriding any registers
that the caller may use. Given your implementation above, write a prologue and

epilogue to account for the registers you used.

prologue:/addi sp, sp -12 # Make space for 3 words on the stack
TL\J \(5 bepvst sw ra, 0(sp) # Store the return addressé‘ we g@t/(’, [o\ &FACQ e oc/e//,?c
w e wfllVSLM sw s0, 4(sp) # Store register s@ //(F L‘/l"% wl v
fu)u/é*gff k,/\"“/“ sw s1, 8(sp) # Store register si J AVP fe “?Ua/e
el oy
C a’l(ﬂ /

4 RISC-V Control Flow

epilogue: 1w
1w
1w
addi

jr

ra,
sQ,
s1,

sp,
ra

o(sp)
4(sp)
8(sp)
sp, 12

Restore ra fU”\’ ‘@/on—, sV (D‘d/b"é” O
Restore s < Yaca

Restore s1
Free space on the stack for the 3 words </-€g &dZL£4L
Return to the caller () ViaaV4 fo [e{r}é/e& /o

