
CS 61C RISC-V Control Flow
Fall 2019 Discussion 4: September 23, 2019

1 RISC-V with Arrays and Lists
Comment what each code block does. Each block runs in isolation. Assume that

there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory

address 0xBFFFFF00, and a linked list struct (as defined below), struct ll* lst,

whose first element is located at address 0xABCD0000. Let s0 contain arr’s address

0xBFFFFF00, and let s1 contain lst’s address 0xABCD0000. You may assume integers

and pointers are 4 bytes and that structs are tightly packed. Assume that lst’s last

node’s next is a NULL pointer to memory address 0x00000000.

struct ll {

int val;

struct ll* next;

}

1.1 lw t0, 0(s0)

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

Sets arr[1] to arr[0] + arr[2]

1.2 loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

Increments all values in the linked list by 1.

1.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:

to arrLo
c I arrCD
b2 to et I t2 arr costar
arrCD t22whichis whatthis is

si is null if thenextis null aka endof list
take Val in struct
add one to it
putthenew valueback
load the nextstructreto 51

C jumpbackto loop tdonotstorereturn
address

to D
E l too I O Thesecheckfor if

wehavegonethrough6
ifendnode itisNULL elm of thelinked1,3T
settstonextint of linkedlist
bad thatvalue
negateit
put itbackincrementthecounter
jump backto loop t respart

2 RISC-V Control Flow

Negates all elements in arr

2 RISC-V Calling Conventions
2.1 How do we pass arguments into functions?

Use the 8 arguments registers a0 - a7

2.2 How are values returned by functions?

Use a0 and a1 as the return value registers as well

2.3 What is sp and how should it be used in the context of RISC-V functions?

sp stands for stack pointer. We subtract from sp to create more space and add to

free space. The stack is mainly used to save (and later restore) the value of registers

that may be overwritten.

2.4 Which values need to saved by the caller, before jumping to a function using jal?

Registers a0 - a7, s0 - t6, and ra

2.5 Which values need to be restored by the callee, before returning from a function?

Registers sp, gp (global pointer), tp (thread pointer), and s0 - s11. Important to

note that we don’t really touch gp and tp

3 More Translating between C and RISC-V
3.1 Translate between the RISC-V code to C. What is this RISC-V function computing?

Assume no stack or memory-related issues, and assume no negative inputs.

add_free
sub_allocate

lookatgreensheetly

L

RISC-V Control Flow 3

C RISC-V

// a0 -> x, a1 -> y,

// t0 -> result

// Function computes pow(x,y)

// Direct translation:

int power(int x, int y) {

int result = 1;

while (y != 0) {

result *= x;

y--;

}

return result;

}

Func: addi t0 x0 1

Loop: beq a1 x0 Done

mul t0 t0 a0

addi a1 a1 -1

jal x0 Loop

Done: add a0 t0 x0

jr ra

4 Writing RISC-V Functions
4.1 Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2
+ (n� 1)

2
+ (n� 2)

2
+ . . .+ 1

2

For this problem, you are given a RISC-V function called square that takes in a

single integer and returns its square.

First, let’s implement the meat of the function: the squaring and summing. We will

be abiding by the caller/callee convention, so in what register can we expect the

parameter n? What registers should hold square’s parameter and return value? In

what register should we place the return value of sumSquare?

add s0, a0, x0 # Set s0 equal to the parameter n

add s1, x0, x0 # Set s1 (accumulator) equal to 0

loop: bge x0, s0, end # Branch if s0 is not positive

add a0, s0, x0 # Set a0 to the value in s0, setting up

args for call to function square

jal ra, square # Call the function square

add s1, s1, a0 # Add the returned value into s1

addi s0, s0, -1 # Decrement s0 by 1

jal x0, loop # Jump back to the loop label

end: add a0, s1, x0 # Set a0 to s1 (desired return value)

4.2 Since sumSquare is the callee, we need to ensure that it is not overriding any registers

that the caller may use. Given your implementation above, write a prologue and

epilogue to account for the registers you used.

prologue: addi sp, sp -12 # Make space for 3 words on the stack

sw ra, 0(sp) # Store the return address

sw s0, 4(sp) # Store register s0

sw s1, 8(sp) # Store register s1

result_I
while at O whiteyKol
to pro result XI c di y t

jumpbhlhtoloopI move result to retI so return result

so_n
s f total

iwhieisw.bgse
wesave ra since we overrideit when wejumpto squareegisterswhowill

i calledbythe
caller

4 RISC-V Control Flow

epilogue: lw ra, 0(sp) # Restore ra

lw s0, 4(sp) # Restore s0

lw s1, 8(sp) # Restore s1

addi sp, sp, 12 # Free space on the stack for the 3 words

jr ra # Return to the caller

putfrom saveboatmen n
s tach

free stuckjumpto restored ra

