
CS 61C CALL, RISC-V Procedures
Fall 2019 Discussion 5: September 30, 2019

1 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines:

C program: foo.c

Compiler

Assembly program: foo.a

Assembler

Object Code: foo.o

Linker lib.o

Executable a.out

(Machine Language)

Loader

Memory

1.1 What is the Stored Program concept and what does it enable us to do?

It is the idea that instructions are just the same as data, and we can treat them as

such. This enables us to write programs that can manipulate other programs!

1.2 How many passes through the code does the Assembler have to make? Why?

Two, one to find all the label addresses and another to convert all instructions while

resolving any forward references using the collected label addresses.

1.3 Describe the six main parts of the object files outputed by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

• Header: Size and position of other parts

• Text: The machine code

• Data: Binary representation of any data in the source file

Instructions_Data
Programmaymodify
other programs

6totalitems

thinkstaticmemory

2 CALL, RISC-V Procedures

• Relocation Table: Identifies lines of code that need to be “handled” by Linker

(jumps to external labels (e.g. lib files), reference to static data)

• Symbol Table: List of file labels and data that can be referenced across files

• Debugging Information: Additional information for debuggers

1.4 Which step in CALL resolves relative addressing? Absolute addressing?

Assembler, Linker

2 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 sum: la t0, array

6 li t1, 4

7 mv t2, x0

8 loop: blt t1, x0, end

9 slli t3, t1, 2

10 addi t3, t0, t3

11 lw t3, 0(t3)

12 add t2, t2, t3

13 addi t1, t1, -1

14 j loop

15 end: mv a0, t2

16 jal ra, print_int # Defined in print.s

2.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

5, 6, 7, 14, 15.

la becomes the auipc and addi instructions.

li becomes an addi instruction here (e.g. li t0, 4 ! addi t0, x0, 4).

mv becomes an addi instruction (i.e. mv rd, rs ! addi rd, rs, 0).

j becomes a jal instruction (e.g. j loop ! jal x0, loop).

2.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second?

loop (in j loop) will be resolved in the first pass since it’s a backward reference.

Since the assembler will have kept note of where end is in the first pass, it will

resolve end in blt t1, x0, end in the second pass.

L gflag
since weknwwhereinourcode wewanttojumpto itisJustAstaticoffsetin ourcodethus we can calculatethis intheAssen

Forabsoluteaddressing wewill notknowwherelibraries etawbestored 71thelinker

pseudo for auipctaddi wewanttoget locationwhich
shouldbe

rt thecurrentlocation plusa well
pseudo for addit 1 El tshadefinedoffset
pseudo 4cm fithereyouwouldneed Ivi taif it is largerthan0 7 FF Orsmallerthen I8800why 0 7FF tox800 sincewe have12bitsthanaddiimmediateANDwesignextendsince it is twosome wit2b ts thelargestvalue is 0 7Fp thesmallestvalveis0 800

pseudoJalxetrop Laba disregardnext
instructionsaddress

pseudo 9add ao tz xD Allwewantis tomovethevalueof tz into a 0

CALL, RISC-V Procedures 3

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

There’s a jump of 8 because la is a pseudoinstruction that gets translated to two

regular RISC-V instructions!

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: addi t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2

12 0x00061C30: jal ra, print_int

2.3 What is in the symbol table after the assembler makes its passes?

Label Address

sum 0x00061C00
or

Label Address

sum 0x00061C00

loop 0x00061C10

end 0x00061C2C

Normally, one would assume that both the loop and end labels would be included in

the symbol table—and that’s perfectly valid answer given that an isolated assembler

would have no way to tell the di↵erence between the three labels.

However, we stated at the beginning of this problem that this file is compiled from

C code. If we have a integrated compiler, assembler, and linker (e.g. gcc), then it

will know from the compilation phase which labels are for functions and which ones

aren’t. As such, it will only put the function labels in the symbol table since those

are the only ones that other files can reference.

2.4 What’s contained in the relocation table?

array and print_int.

Since array is defined in the static portion of memory, there’s no way the assembler

could know where it will be located (relative to the program counter) until the

program actually executes. We recall that the static portion of memory is above the

code portion of memory. Since we haven’t linked other files with this one yet (that’s

done in the linker phase!), we don’t know how much code we’ll have, so we don’t

know where the static portion of memory will begin! Also, other files may declare

items in static memory, and the assembler won’t know how these are specifically

ordered when the program is finally loaded.

Similarly, print_int is defined in a di↵erent file, so the assembler doesn’t know

wipeandaddi f

4 CALL, RISC-V Procedures

where it will be in the final executable. That will be decided in the linking stage.

3 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

3.1 What is range of 32-bit instructions that can be reached from the current PC using

a branch instruction?

The immediate field of the branch instruction is 12 bits. This field only references

addresses that are divisible by 2, so the immediate is multiplied by 2 before being

added to the PC. Therefore, the branch immediate can move PC in the range of

[�212, 212 � 1] bytes. If we’re in a version of RISC-V that has 2-byte instructions,

then this corresponds to a range of [�2�11, 211 � 1] instructions. The instructions

we use, however, are 4 bytes so they reside at addresses that are divisible by 4 not 2.

Therefore, we can only reference half as many 4-byte instructions as before, and the

range of 4-byte instructions is [�210, 210 � 1]

3.2 What is the range of 32-bit instructions that can be reached from the current PC

using a jump instruction?

The immediate field of the jump instruction is 20 bits. Similar to above, this

immediate is multiplied by 2 before added to the PC to get the final address. Since

the immediate is signed, we have a range of [�220, 220 � 1] bytes, or [�219, 219 � 1]

2-byte instructions. As we actually want the number of 4-byte instructions, we

actually can reference those within [�218, 218 � 1] instructions of the current PC.

3.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

1 0x002cff00: loop: add t1, t2, t0 | 0 | 5 | 7 | 0 | 6 | 0x33 |

2 0x002cff04: jal ra, foo | 0 | 0x14 | 0 | 0 | 1 | 0x6F |

3 0x002cff08: bne t1, zero, loop | 1 | 0x3F | 0 | 6 | 1 | 0xC | 1 | 0x63 |

4 ...

2bitstoaddressbyteaddresses

12
convertfrm
byteceddrtohalfranch 2 addercabathe

vbitimm implicitzed
epresents sowchauez addressessoifwe use wascomp crewhalf
Words

ha 2,2121 byteswhy
Wecanaddressfromarrentp
Ifnerestrict this tohalfweuilldividthissyzsincebytesfihtihahalfwordthis
2 2 D This theme

EqJumpshave20bitsw inpbzerothus 21 bitsinneaktso wecanaddress 220,2 Dbar fi I halfwordson
Edo 2 1 words

TerreD
1 6 Oc2 7
0 5 0 002offD8
ra4 euro rsl rsl fund rd spade

no noL u lain ra

0 2 c u loS rsr rsl fund til it
Julianne 0 04

20 oxo so 0 28
000000000 0000001 f qh is out Itisimplicitintheinstructionoxo lair ox i t

CALL, RISC-V Procedures 5

5 0x002cff2c: foo: jr ra ra = 0x002cff08

