CS 610 CALL, RISC—V PI‘OCG(].U.I‘GS
Fall 2019 Discussion d: September 30, 2019

1 CALL

The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines:

[C program: foo.c]

!

[Assembly program: foo.a]

|

[Object Code: foo.o]

‘ Executable a.out ’

(Machine Language)

¥

[Memory]

s = Pata
What is the Stored Program concept and what does it enable us to do? }Ag('f v d" s

It is the idea that instructions are just the same as data, and we can treat them as f’/oy (am Mo\ M o) /-{-;/
such. This enables us to write programs that can manipulate other programs! ot her { /”’,9 VAL

How many passes through the code does the Assembler have to make? Why?

Two, one to find all the label addresses and another to convert all instructions while

resolving any forward references using the collected label addresses.

Describe the six main parts of the object files outputed by the Assembler (Header,)
Text, Data, Relocation Table, Symbol Table, Debugging Information). (Hotalr tonvs,
e Header: Size and position of other parts

e Text: The machine code

e Data: Binary representation of any data in the source file (-{ hin l s ‘7"'/(/ MCA/V/)

2 CALL, RISC-V Procedures

e Relocation Table: Identifies lines of code that need to be “handled” by Linker

(jumps to external labels (e.g. lib files), reference to static data)
e Symbol Table: List of file labels and data that can be referenced across files

e Debugging Information: Additional information for debuggers (* 3 “C((’VO)
Which step in CALL resolves relative addressing? Absolute addressing?

~ [~ L
L? {/rﬂ ce wa/ Q/\'k/ WL{,E/Q{ P o (Q‘a, we_ WM‘P '{7 VA +@/ ("L/J‘\/ VS
Assembler, Linker Osyase KLsed i ovr Code ¥hvi we Con calew (d-f‘*hfs (a 7L'/L4sr!qg

Foralalvtc MJ/M!/@ we u”/ ,‘o'r kv yhore |)O/M,“ej et “ //
) Assembling RISCLY bestvered #4 4le ligie,

Let’s say that we have a C program that has a single function sum that computes
the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the
RISC-V code yet.

.import print.s # print.s is a different file
.data
array: .word 1 23 45
on wkith shald be
.text UJD for A/UI\PC +add’” CWC’WMf*o + {acm‘:oh [WAY; t\ﬂ/

sum: la t@, array &ffe ey Uitdie Larf(,«‘f'lfaw")'\\h Plus @ wel/
15 b1, 4 e plovd® £or T & ¢ delnef L€ ccet)
mv t2, x0 &— r{euéfa RS (afg,efzh,\ u'w'\ £ Leg . LoV WN(A ned v tays

loop: blt t1, x0, end \,./Lu/ 0)(7pp <\'0x ¥>::7FF‘ 0/ swalles Fln 0)(g 09
s11i t3, t1, 2 Vwrod Nte 1SN wt AeVe (L biks fn an g dd
addi t3, te, t3 (Lbr¥s yu [AWD we signexde d ¢ ha (+75 fuos comp. Vith
arg&p}m(w 3 SE Lo mn U _
1w t3, 0(t3) 0300 s Ox 7FT thosmalies fryloe 3

add t2, t2, t3

addi t1, t1; —10 sal 0 lep [Aba. J,’Hcﬁwﬂ n k4 (ustruebThsadfress
j loop&— P>0oLé

. (ot awant (5 4e m (S rhevalw
end: mv ae, t2&— QLVe? " vﬁ“o\é 00, /t’}// YO lﬁ(£t (o a0

jal ra, print_int # Defined in print.s

Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

5,6, 7,14, 15.

la becomes the auipc and addi instructions.

1i becomes an addi instruction here (e.g. 1i t@, 4 — addi t@, x@, 4).
mv becomes an addi instruction (i.e. mv rd, rs — addi rd, rs, 0).

j becomes a jal instruction (e.g. j loop — jal x@, loop).

For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second?

loop (in j loop) will be resolved in the first pass since it’s a backward reference.
Since the assembler will have kept note of where end is in the first pass, it will

resolve end in b1t t1, x@, end in the second pass.

CALL, RISC-V Procedures 3

Let’s assume that the code for this program starts at address 0x00061C00. The
code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

There’s a jump of 8 because la is a pseudoinstruction that gets translated to tw\o

regular RISC-V instructions!
avip C woad s £

0x00061C00: sum: la t0, array =
0x00061C08: 1i t1, 4
0x00061COC: mv t2, x0
_0x00061C19: loop: blt t1, x0, end
0x00061C14: slli t3, t1, 2
0x00061C18: addi t3, to, t3
0x00061C1C: 1w t3, 0(t3)
0x00061C20: add t2, t2, t3
0x00061C24: addi t1, t1, -1
0x00061C28: j loop
0x00061C2C: end: mv a@, t2
0x00061C30: jal ra, print_int
prene_tnt

What is in the symbol table after the assembler makes its passes?

Label | Address

Label | Address sum 0x00061C00
or
sum 0x00061C00 loop 0x00061C10

end 0x00061C2C

Normally, one would assume that both the loop and end labels would be included in
the symbol table—and that’s perfectly valid answer given that an isolated assembler

would have no way to tell the difference between the three labels.

However, we stated at the beginning of this problem that this file is compiled from
C code. If we have a integrated compiler, assembler, and linker (e.g. gcc), then it
will know from the compilation phase which labels are for functions and which ones
aren’t. As such, it will only put the function labels in the symbol table since those

are the only ones that other files can reference.
What’s contained in the relocation table?

array and print_int.

Since array is defined in the static portion of memory, there’s no way the assembler
could know where it will be located (relative to the program counter) until the
program actually executes. We recall that the static portion of memory is above the
code portion of memory. Since we haven’t linked other files with this one yet (that’s
done in the linker phase!), we don’t know how much code we’ll have, so we don’t
know where the static portion of memory will begin! Also, other files may declare
items in static memory, and the assembler won’t know how these are specifically

ordered when the program is finally loaded.

Similarly, print_int is defined in a different file, so the assembler doesn’t know

a branch instruction? con vert frm
o . o 2 € \yteadis MA
v 40¢ The immediate field of the branch instruction is 12 bits. This field only references 27 Adsv Calg %
ikinn addresses that are divisible by 2, so the immediate is multiplied by 2 before being ‘ Pl T ers 2)
\q‘// fﬂ»(-/\‘} added to the PC. Therefore, the branch immediate can move PC in the range of Soatbyoe L aJ dre 5o
g
f \Q ,L/dé) [—212,212 — 1] bytes. If we're in a version of RISC-V that has 2-byte instructions, = L~/"~ Lse 408 can p ‘f:c./ Vi
4
W then this corresponds to a range of [-2711, 211 — 1] instructions. The instructions é Z,'L 111’0 ‘}’7(9” UL,"/
we use, however, are 4 bytes so they reside at addresses that are divisible by 4 not 2. Jer e'(’ 4
Therefore, we can only reference half as many 4-byte instructions as before, and the 1\(4/¢/CW‘ a‘\i s p l:"“ ot AL
7 .
range of 4-byte instructions is [—2'°,219 — 1] €aeesiitt (§ = Aﬂ'é'f‘w
S (/L‘,:(MJI'VM 56y 2 /'\Cc-ﬁﬂ
What is the range of 32-bit instructions that can be reached from the current P Y‘Vl@i iU e A wird fls
using a jump instruction? [2, L('—J —r[‘ 3 f?rf Leszon
"
The immediate field of the jump instruction is 20 bits. Similar to above, this /V‘L'h“ v €or wad [7' LJ
immediate is multiplied by 2 before added to the PC to get the final address. Since J¢
. U .p ' 20 920 © 19 919 re bave L0 wie “// 0
the immediate is signed, we have a range of [—22Y, 2= — 1] bytes, or [-2'? 21 — 1] ers Ylus 2 (¢ + ¢ C/‘/
g
2-byte instructions. As we actually want the number of 4-byte instructions, we So w@ ..., Ldress [! 'h""‘t/ 7,7
<. _
actually can reference those within [—2'® 2® — 1] instructions of the current PC. or q @ 7’)2 Q é}’fy
[~L P ’ij o lF words 0.
Given the following RISC-V code (and instruction addresses), fill in the blank fields @ g | 7wt sds
for the following instructions (you’ll need your RISC-V green card!). EL (v
o= 0 | ox002cFF00: Loop: add t1, t2, to | | | | | |__ox33__|
(=€ 2 oxo02cffos: 2@ foo | | | __ox6F__|
kl; 3 0x002cffes: bne t1, zero, loop | | | | | | __0x63__|
4 \
Q9=
€ S‘ 5 @x002cff2c: foo: jr ra >ra = DX O 0 ZC-F{ 0?
rec
eunc? pre’ rs | qwedd rd apede
1 0x002cff00: loop: add t1, t2, to | 0 | 5 | 7. | @ | 6 | 0x33 |
. w0 ol n (a1)
2 0x002cffo4: jal ra, foo | 0 | 0x14 | o | 0 | 1 | Ox6F |
3 0x002cff08: bne t1, zero, loop | 1 | ox3F | © | 6 | 1 | oxC | 1 | ox63 |
) Ox 2cC L \0- § vs1 rsl twed i ol
@ Jal iwn=_0x 04 4
- w29
'u N0 Sa. 9)(
TN EETY
00009 0000 0000 00 1000 o ot - i _
Oxo [N | — ?‘Vm G ooout ! FHEimpliest e The inghyectiea

4 CALL, RISC-V Procedures

where it will be in the final executable. That will be decided in the linking stage.

3 RISC-V Addressing

We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create
a memory address (used for 1w, 1b, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the
instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For
instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that
get converted to jalr.

What is range of 32-bit instructions that can be reached from the current PC using

s qd,{/‘g
bk To “Clress
(z oyfe adivess,,
v

2%

CALL, RISC-V Procedures 5

5 @x002cff2c: foo: jr ra ra = 0x002cffo8

