
CS 61C Number Representation
Spring 2020 Discussion 1: January 29th, 2020

Notes

1 Unsigned Integers
1.1 If we have an n-digit unsigned numeral dn�1dn�2 . . . d0 in radix (or base) r, then

the value of that numeral is
Pn�1

i=0 ridi, which is just fancy notation to say that

instead of a 10’s or 100’s place we have an r’s or r2’s place. For the three radices

binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.

We don’t have calculators during exams, so let’s try this by hand. Recall that our

preferred tool for writing large numbers is the IEC prefixing system:

Ki (Kibi) = 210

Mi (Mebi) = 220

Gi (Gibi) = 230

Ti (Tebi) = 240

Pi (Pebi) = 250

Ei (Exbi) = 260

Zi (Zebi) = 270

Yi (Yobi) = 280

(a) Convert the following numbers from their initial radix into the other two

common radices:

1. 0b10010011 = 147 = 0x93

2. 63 = 0b0011 1111 = 0x3F

3. 0b00100100 = 36 = 0x24

4. 0 = 0b0 = 0x0

5. 39 = 0b0010 0111 = 0x27

6. 437 = 0b0001 1011 0101 = 0x1B5

7. 0x0123 = 0b0000 0001 0010 0011 = 291

(b) Convert the following numbers from hex to binary:

1. 0xD3AD = 0b1101 0011 1010 1101 = 54189

2. 0xB33F = 0b1011 0011 0011 1111 = 45887

3. 0x7EC4 = 0b0111 1110 1100 0100 = 32452

(c) Write the following numbers using IEC prefixes:

• 216 = 64 Ki

• 234 = 16 Gi

• 227 = 128 Mi

• 261 = 2 Ei

• 243 = 8 Ti

• 247 = 128 Ti

• 236 = 64 Gi

• 259 = 512 Pi

(d) Write the following numbers as powers of 2:

• 2 Ki = 211

• 256 Pi = 258

• 512 Ki = 219

• 64 Gi = 236

• 16 Mi = 224

• 128 Ei = 267
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2 Number Representation

2 Signed Integers
2.1 Unsigned binary numbers work for natural numbers, but many calculations use

negative numbers as well. To deal with this, a number of di↵erent schemes have

been used to represent signed numbers, but we will focus on two’s complement, as it

is the standard solution for representing signed integers.

• Most significant bit has a negative value, all others are positive. So the value of

an n-digit two’s complement number can be written as
Pn�2

i=0 2idi � 2n�1dn�1.

• Otherwise exactly the same as unsigned integers.

• A neat trick for flipping the sign of a two’s complement number: flip all the

bits and add 1.

• Addition is exactly the same as with an unsigned number.

• Only one 0, and it’s located at 0b0.

For questions (a) through (c), assume an 8-bit integer and answer each one for the

case of an unsigned number, biased number with a bias of -127, and two’s complement

number. Indicate if it cannot be answered with a specific representation.

(a) What is the largest integer? What is the result of adding one to that number?

1. Unsigned? 255, 0

2. Biased? 128, -127

3. Two’s Complement? 127, -128

(b) How would you represent the numbers 0, 1, and -1?

1. Unsigned? 0b0000 0000, 0b0000 0001, N/A

2. Biased? 0b0111 1111, 0b1000 0000, 0b0111 1110

3. Two’s Complement? 0b0000 0000, 0b0000 0001, 0b1111 1111

(c) How would you represent 17 and -17?

1. Unsigned? 0b0001 0001, N/A

2. Biased? 0b1001 0000, 0b0110 1110

3. Two’s Complement? 0b0001 0001, 0b1110 1111

(d) What is the largest integer that can be represented by any encoding scheme

that only uses 8 bits?

There is no such integer. For example, an arbitrary 8-bit mapping could choose

to represent the numbers from 1 to 256 instead of 0 to 255.

(e) Prove that the two’s complement inversion trick is valid (i.e. that x and x+ 1

sum to 0).

Note that for any x we have x + x = 0b1 . . . 1. Adding 0b1 to 0b1 . . . 1 will

cause the value to overflow, meaning that 0b1 . . . 1 + 0b1 = 0b0 = 0. Therefore,

x+ x+ 1 = 0
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Number Representation 3

A straightforward hand calculation shows that 0b1 . . . 1 + 0b1 = 0.

(f) Explain where each of the three radices shines and why it is preferred over

other bases in a given context.

Decimal is the preferred radix for human hand calculations, likely related to

the fact that humans have 10 fingers.

Binary numerals are particularly useful for computers. Binary signals are

less likely to be garbled than higher radix signals, as there is more “distance”

(voltage or current) between valid signals. Additionally, binary signals are quite

convenient to design circuits, as we’ll see later in the course.

Hexadecimal numbers are a convenient shorthand for displaying binary numbers,

owing to the fact that one hex digit corresponds exactly to four binary digits.

3 Arithmetic and Counting
3.1 Addition and subtraction of binary/hex numbers can be done in a similar fashion as

with decimal digits by working right to left and carrying over extra digits to the

next place. However, sometimes this may result in an overflow if the number of bits

can no longer represent the true sum. Overflow occurs if and only if two numbers

with the same sign are added and the result has the opposite sign.

(a) Compute the decimal result of the following arithmetic expressions involving

6-bit Two’s Complement numbers as they would be calculated on a computer.

Do any of these result in an overflow? Are all these operations possible?

1. 0b011001 � 0b000111

0b010010 = 18, No overflow.

2. 0b100011 + 0b111010

Adding together we get 0b1011101, however since we are working with

6-bit numbers we truncate the first digit to get 0b011101 = 29. Since we

added two negative numbers and ended up with a positive number, this

results in an overflow.

3. 0x3B + 0x06

Converting to binary, we get 0b111011 + 0b000110 = (after truncating)

0b000001 = 1. Despite the extra truncated bit, this is not an overflow as

-5 + 6 indeed equals 1!

4. 0xFF � 0xAA

Trick question! This is not possible, as these hex numbers would need 8

bits to represent and we are working with 6 bit numbers.

(b) What is the least number of bits needed to represent the following ranges using

any number representation scheme.

1. 0 to 256
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4 Number Representation

In general n bits can be used to represent at most 2n distinct things. As

such 8 bits can represent 28 = 256 numbers. However, this range actually

contains 257 numbers so we need 9 bits.

2. -7 to 56

Range of 64 numbers which can be represented through 6 bits as 26 = 64

3. 64 to 127 and -64 to -127

We are representing 128 numbers in total which requires 7 bits.

4. Address every byte of a 12 TiB chunk of memory

Since a TiB is 240 and the factor of 12 needs 4 bits, in total we can represent

using 44 bits as 243 bytes < 12 TiB < 244 bytes
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