CS 61C C Basics
Spring 2020 Discussion 2: February 2, 2020

1 C

C is syntactically similar to Java, but there are a few key differences:
1. C is function-oriented, not object-oriented; there are no objects.
2. C does not automatically handle memory for you.

e Stack memory, or things that are not manually allocated: data is garbage

immediately after the function in which it was defined returns.

e Heap memory, or things allocated with malloc, calloc, or realloc: data
is freed only when the programmer explicitly frees it!

e There are two other sections of memory that we learn about in this course,

static and code, but we’ll get to those later.
e In any case, allocated memory always holds garbage until it is initialized!

3. C uses pointers explicitly. If p is a pointer, then *p tells us to use the value
that p points to, rather than the value of p, and &x gives the address of x
rather than the value of x.

On the left is the memory represented as a box-and-pointer diagram.

On the right, we see how the memory is really represented in the computer.

OXFFFFFFFF OXFFFFFFFF

0xF93209B0 | x=0x61C 0xF93209B0 0x61C
OxF93209AC | Ox2A OXF93209AC Ox2A
0xF9320904 P 0xF9320904 | OXFI3209AC
0xF9320900 PP 0xF9320900 | OxF9320904
0X00000000 0X00000000

Let’s assume that int*x p is located at @xF9320904 and int x is located at
0xF93209B0. As we can observe:

e xp evaluates to @x2A (421).
e p evaluates to 0xF93209AC.
e x evaluates to x61C.

e &x evaluates to @xF93209B0.

Let’s say we have an int **pp that is located at 0xF9320900.

2 C Basics

What does pp evaluate to? How about *pp? What about **pp?

The following functions are syntactically-correct C, but written in an incomprehen-

sible style. Describe the behavior of each function in plain English.

(a) Recall that the ternary operator evaluates the condition before the ? and returns
the value before the colon (:) if true, or the value after it if false.

1 int foo(int *arr, size_t n) {
2 return n ? arr[@] + foo(arr + 1, n - 1) : 0;

3}

(b) Recall that the negation operator, !, returns 0 if the value is non-zero, and 1 if

the value is 0. The ~ operator performs a bitwise not (NOT) operation.

1 int bar(int *arr, size_t n) {

2 int sum = 9, i;

3 for (i =n; i>0; i--)
4 sum += larr[i - 1];
5 return “sum + 1;

6

(c¢) Recall that " is the bitwise exclusive-or (XOR) operator.

1 void baz(int x, int y) {

2 X =x "vy;
3 y =x"y;
4 X =x"vy;
5}

(d) (Bonus: How do you write the bitwise exclusive-nor (XNOR) operator in C?)

2 Programming with Pointers
Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

void swap(

(b)

C Basics 3

Return the number of bytes in a string. Do not use strlen.

int mystrlen(

The following functions may contain logic or syntax errors. Find and correct them.

(a)

Returns the sum of all the elements in summands.

int sum(int* summands) {
int sum = 9;
for (int i = 9; i < sizeof(summands); it++)
sum += x(summands + i);

return sum;

Increments all of the letters in the string which is stored at the front of an
array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

void increment(charx string, int n) {
for (int i = 0; i < n; i++)
*(string + i)++;

Copies the string src to dst.

void copy(charx src, charx dst) {

while (*dst++ = *src++);

Overwrites an input string src with “61C is awesome!” if there’s room. Does
nothing if there is not. Assume that length correctly represents the length of
src.

4 C Basics

1 void cs6lc(charx src, size_t length) {

2 char xsrcptr, replaceptr;

3 char replacement[16] = "61C is awesome!";
4 srcptr = src;

5 replaceptr = replacement;

6 if (length >= 16) {

7 for (int i = 0; i < 16; i++)

8 *srcptr++ = xreplaceptr++;

9 }

10}

3 Memory Management

For each part, choose one or more of the following memory segments where the data

could be located: code, static, heap, stack.
(a)
(b)
(c)
(d) Constants
)
)
)

Static variables
Local variables

Global variables

Machine Instructions

f) Result of malloc

(e
(
(g) String Literals
Write the code necessary to allocate memory on the heap in the following scenarios
(a) An array arr of k integers

(b) A string str containing p characters

(¢) An n x m matrix mat of integers initialized to zero.

What’s the main issue with the code snippet seen here? (Hint: gets() is a function

that reads in user input and stores it in the array given in the argument.)

charx foo() {
char* buffer[64];
gets(buffer);

charx important_stuff = (char*) malloc(11 * sizeof(char));

int i;
for (i = 0; i < 10; i++) important_stuff[i] = buffer[il;

C Basics 5

9 important_stuff[i] = "\0";
10 return important_stuff;

Suppose we’ve defined a linked list struct as follows. Assume *1st points to the
first element of the list, or is NULL if the list is empty.

struct 11_node {
int first;
struct 11_node* rest;

}
Implement prepend, which adds one new value to the front of the linked list. Hint:

why use ll_.node * x [st instead of ll_.nodexlst?

void prepend(struct 11_node*x 1st, int value)

Implement free_11, which frees all the memory consumed by the linked list.

void free_ll(struct 11_nodexx 1st)

	C
	Programming with Pointers
	Memory Management

