
CS 61C C Basics
Spring 2020 Discussion 2: February 2, 2020

1 C
C is syntactically similar to Java, but there are a few key di↵erences:

1. C is function-oriented, not object-oriented; there are no objects.

2. C does not automatically handle memory for you.

• Stack memory, or things that are not manually allocated : data is garbage

immediately after the function in which it was defined returns.

• Heap memory, or things allocated with malloc, calloc, or realloc: data

is freed only when the programmer explicitly frees it!

• There are two other sections of memory that we learn about in this course,

static and code, but we’ll get to those later.

• In any case, allocated memory always holds garbage until it is initialized!

3. C uses pointers explicitly. If p is a pointer, then *p tells us to use the value

that p points to, rather than the value of p, and &x gives the address of x

rather than the value of x.

On the left is the memory represented as a box-and-pointer diagram.

On the right, we see how the memory is really represented in the computer.

...

x=0x61C

0x2A
...
p
pp
...

0xFFFFFFFF

0x00000000

0xF93209B0

0xF93209AC

0xF9320904
0xF9320900

...

0x61C

0x2A
...

0xF93209AC

0xF9320904
...

0xFFFFFFFF

0x00000000

0xF93209B0

0xF93209AC

0xF9320904

0xF9320900

Let’s assume that int* p is located at 0xF9320904 and int x is located at

0xF93209B0. As we can observe:

• *p evaluates to 0x2A (4210).

• p evaluates to 0xF93209AC.

• x evaluates to 0x61C.

• &x evaluates to 0xF93209B0.

Let’s say we have an int **pp that is located at 0xF9320900.

1.1 What does pp evaluate to? How about *pp? What about **pp?

Stringsendwith a nullterminal
lol Thisisequivalentto zero

Arraysize isnotkeptsoyouMust keep ityourself
sizeof getssize of thetypepassedin

andnotthelengthofthe
array
Istackv epartsof
9Heap staticwritab
Static ft readonly

f

dynamicallyallocated
Memorywhichpersists
beyond afunction call

memoryallocatedin
functions passes
orgs to functions
containsreturnvalues
returnaddress

2 C Basics

pp evaluates to 0xF9320904. *pp evaluates to 0xF93209AC. **pp evaluates to 0x2A.

1.2 The following functions are syntactically-correct C, but written in an incomprehen-

sible style. Describe the behavior of each function in plain English.

(a) Recall that the ternary operator evaluates the condition before the ? and returns

the value before the colon (:) if true, or the value after it if false.

1 int foo(int *arr, size_t n) {

2 return n ? arr[0] + foo(arr + 1, n - 1) : 0;

3 }

Returns the sum of the first N elements in arr.

(b) Recall that the negation operator, !, returns 0 if the value is non-zero, and 1 if

the value is 0. The ˜ operator performs a bitwise not (NOT) operation.

1 int bar(int *arr, size_t n) {

2 int sum = 0, i;

3 for (i = n; i > 0; i--)

4 sum += !arr[i - 1];

5 return ˜sum + 1;

6 }

Returns -1 times the number of zeroes in the first N elements of arr.

(c) Recall that ˆ is the bitwise exclusive-or (XOR) operator.

1 void baz(int x, int y) {

2 x = x ˆ y;

3 y = x ˆ y;

4 x = x ˆ y;

5 }

Ultimately does not change the value of either x or y.

(d) (Bonus: How do you write the bitwise exclusive-nor (XNOR) operator in C?)

1 x == y

2 Programming with Pointers
2.1 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

1 void swap(int *x, int *y) {

2 int temp = *x;

thisis the tpp 1 19320900
dereterence theaddressdatafrom

pp
PP 0 59320904defeferenced 0 1 93209AC whichTpp 0 193209AC is 0 2A

Thisisto pop off firstelm tsetnextiteminarray
I Tailcasereturns0

C getssumoftherestofthedmfirstelminarriffryhnaisseffequialatto iffefffnar.CDfm.la inD3elseC
return0

3

add1to sum ifitemin arr is0

Inurftaddonc This istwoscomplementinversion

Yax'ry x'Ix Ay
y AyAy x ex'Axity

I x p so Y XtX Yy X
Tthis is because Xty were chargedonlyinthe functiont.no globally

AB

µ
ExcersiteHowwouldyoumake it so it affecteTruthTabfenor

ly47 soAmustbethemDkbally Answermakexty pointerstthesmeasB edit the dereferenaditens

need tostore a temp int so that whenwewritetowe stillhave its value
Notetemponlyhasto be anintsince x is an intpointer
f X dereferences the pointer so it returns an int

C Basics 3

3 *x = *y;

4 *y = temp;

5 }

(b) Return the number of bytes in a string. Do not use strlen.

1 int mystrlen(char* str) {

2 int count = 0;

3 while (*str++) {

4 count++;

5 }

6 return count;

7 }

2.2 The following functions may contain logic or syntax errors. Find and correct them.

(a) Returns the sum of all the elements in summands.

It is necessary to pass a size alongside the pointer.

1 int sum(int* summands, size_t n) {

2 int sum = 0;

3 for (int i = 0; i < n; i++)

4 sum += *(summands + i);

5 return sum;

6 }

(b) Increments all of the letters in the string which is stored at the front of an

array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

The ends of strings are denoted by the null terminator rather than n. Simply

having space for n characters in the array does not mean the string stored

inside is also of length n.

1 void increment(char* string) {

2 for (i = 0; string[i] != 0; i++)

3 string[i]++; // or (*(string + i))++;

4 }

Another common bug to watch out for is the corner case that occurs when

incrementing the character with the value 0xFF. Adding 1 to 0xFF will overflow

back to 0, producing a null terminator and unintentionally shortening the string.

(c) Copies the string src to dst.

1 void copy(char* src, char* dst) {

note
Thisisequivalentto Lett tt xStitt cpostincreant preincrement

temp X X1 1
ThereDatable X 1 L returnX
online with

operator

precedence return temp
Excersite whatis

another
methodwecouldusetodetermine thelengthleadofanarray Hintthereis adownsizedTofix

this
wee HintThinkaboutstringsissueeedtrpassinthe wHmHhweAnswer.Addsome nullbyteto signifyerdDrawback

size0 ww
sizeofcsummandoneim

gedhaesed.grroy 0 sizeof returns the sizeof thetypesincesummary
isan int pointer on astandard 32bit systemthiswouldbe 4B fhersizeofCinta 4 thereis anedgecasewheresitcotcangetthelength inbytesofanarraywhen the compilerdefendedthe

g
FIIEEEEE.IE mnize

wtf this isbecause thenull
terminator b D pp 1111 Ill lD f was oooo ok I

gets 10000odoessomething dropped

Gpbooso0000
this40 00 he

Thismeansyouneedtocheck fornullbeforeincrementing

4 C Basics

2 while (*dst++ = *src++);

3 }

No errors.

(d) Overwrites an input string src with “61C is awesome!” if there’s room. Does

nothing if there is not. Assume that length correctly represents the length of

src.

1 void cs61c(char* src, size_t length) {

2 char *srcptr, replaceptr;

3 char replacement[16] = �61C is awesome!�;

4 srcptr = src;

5 replaceptr = replacement;

6 if (length >= 16) {

7 for (int i = 0; i < 16; i++)

8 *srcptr++ = *replaceptr++;

9 }

10 }

char *srcptr, replaceptr initializes a char pointer, and a char—not two

char pointers.

The correct initialization should be, char *srcptr, *replaceptr.

3 Memory Management
3.1 For each part, choose one or more of the following memory segments where the data

could be located: code, static, heap, stack.

(a) Static variables

Static

(b) Local variables

Stack

(c) Global variables

Static

(d) Constants

Code, static, or stack

Constants can be compiled directly into the code. x = x + 1 can compile with

the number 1 stored directly in the machine instruction in the code. That

instruction will always increment the value of the variable x by 1, so it can be

stored directly in the machine instruction without reference to other memory.

This can also occur with pre-processor macros.

remember Sothiscopieseuchelmtonettarcommon
dstttmeans errorsarestudentsconfusing thiswith

temp dest kttdst kttsrcwhichwouldsk.gsdust1 1 firstelm gooutofboundsby1returntemp

length of GK is awesome

Instating to

Exl
intro

globalvariable

Voidfor I
Function int ya Yisalocalvariable
variables stty
programvariables chartstatica Hello

Charnstaohls 05614thBisa Thisisapointrtoapartpointer read oftheStrohonlystuttdator
ex add ad

X xADtwh.gg constant

c avariable Assembly

Notead registerinCPO

C Basics 5

1 #define y 5

2

3 int plus_y(int x) {

4 x = x + y;

5 return x;

6 }

Constants can also be found in the stack or static storage depending on if it’s

declared in a function or not.

1 const int x = 1;

2

3 int sum(int* arr) {

4 int total = 0;

5 ...

6 }

In this example, x is a variable whose value will be stored in the static storage,

while total is a local variable whose value will be stored on the stack. Variables

declared const are not allowed to change, but the usage of const can get more

tricky when combined with pointers.

(e) Machine Instructions

Code

(f) Result of malloc

Heap

(g) String Literals

Static or stack.

When declared in a function, string literals can be stored in di↵erent places.

char* s = �string� is stored in the static memory segment while char[7] s

= �string� will be stored in the stack.

3.2 Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

arr = (int *) malloc(sizeof(int) * k);

(b) A string str containing p characters

str = (char *) malloc(sizeof(char) * (p + 1)); Don’t forget the null ter-

minator!

(c) An n⇥m matrix mat of integers initialized to zero.

mat = (int *) calloc(n * m, sizeof(int));

pre processor
macro

p
x islocalvariable stachts
y is just 1Which ischargedoncompile It isNOT
avariableoncecompiled

LF I c same as intconst E II

Ahawhere it points to is the samebutthe
datathere canchangedepending onwhere ittext storedwhatparameters it was storedwith

otwayth.myfhjM chlb4redbb Freecanfreeanyofthesechallot
Note theALCreturn a pointerto the location

on theheap
wherethedata isstoned If itreturnsNULLthen itcould
notallocate anymorememory DON'TFORGETNURLCHECK

forany alloc
Alsoreallocmay ormaynot use thesameboats
inmemory1

tomake itcomputable w all systemsIf youputjust 4 it would beonlycenpatawithsystemswheresiteoffing 4 Whiznotgenerally true his

lineararraywhere
4444414T

6 C Basics

Alternative solution. This might be needed if you wanted to e�ciently permute

the rows of the matrix.

1 mat = (int **) calloc(n, sizeof(int *));

2 for (int i = 0; i < n; i++)

3 mat[i] = (int *) calloc(m, sizeof(int));

3.3 What’s the main issue with the code snippet seen here? (Hint: gets() is a function

that reads in user input and stores it in the array given in the argument.)

1 char* foo() {

2 char* buffer[64];

3 gets(buffer);

4

5 char* important_stuff = (char*) malloc(11 * sizeof(char));

6

7 int i;

8 for (i = 0; i < 10; i++) important_stuff[i] = buffer[i];

9 important_stuff[i] = �\0�;

10 return important_stuff;

11 }

If the user input contains more than 63 characters, then the input will override other

parts of the memory! (You will learn more about this and how it can be used to

maliciously exploit programs in CS 161.)

Note that it’s perfectly acceptable in C to create an array on the stack. It’s often

discouraged (mostly because people often forget the array was initialized on the

stack and accidentally return a pointer to it), but there’s it’s not an issue in and of

itself.

Suppose we’ve defined a linked list struct as follows. Assume *lst points to the

first element of the list, or is NULL if the list is empty.

struct ll_node {

int first;

struct ll_node* rest;

}

3.4 Implement prepend, which adds one new value to the front of the linked list. Hint:

why use ll node ⇤ ⇤ lst instead of ll node⇤lst?

1 void prepend(struct ll_node** lst, int value) {

2 struct ll_node* item = (struct ll_node*) malloc(sizeof(struct ll_node));

3 item->first = value;

4 item->rest = *lst;

whee coulddosamebutstore
PcP rows Differentmethods

f q Y
Useful indifferenttypeofaccesses

whathappens if wehavemorethan 63characters
we mayoverride thestack

malesnew strict11 node in the heapputsvalue to newlycreatedstructuresets rest to current start

C Basics 7

5 *lst = item;

6 }

3.5 Implement free_ll, which frees all the memory consumed by the linked list.

1 void free_ll(struct ll_node** lst) {

2 if (*lst) {

3 free_ll(&((*lst)->rest));

4 free(*lst);

5 }

6 *lst = NULL; // Make writes to **lst fail instead of writing to unusable memory.

7 }

sets start to newlycreated a newsetup structure

checksto see Tfhasactualnode notnull
recursively frees the reststructure

freescurrentstructure

Remember since this is arecursivecall it willfree
ALL struts inthe tinted list

